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Abstract

Statistical properties of an order book and the e*ect they have on price dynamics were studied
using the high-frequency NASDAQ Level II data. It was observed that the size distribution of
marketable orders (transaction sizes) has power law tails with an exponent 1+�market =2:4±0:1.
The distribution of limit order (or quote) sizes was found to be consistent with a power law
with an exponent close to 2. A somewhat better 7t to this distribution was obtained by using a
log-normal distribution which has an e*ective power law exponent equal to 2 in the middle of
the observed range. The depth of the order book measured as a price impact of a hypothetical
large market order was observed to be a non-linear function of its size. A large imbalance in
the number of limit orders placed at bid and ask sides of the book was shown to lead to a
predictable short term price change, which is in accord with the law of supply and demand.
c© 2001 Elsevier Science B.V. All rights reserved.
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As a result of collective e*orts by many authors the list of basic “stylized” empirical
facts about market price �uctuations has now begun to emerge. 1 It became known
that the histogram of short term changes in price �p(t)=p(t + �t) − p(t) has “fat”
power-law tails: Prob (�p¿x) ∼ x−. The exponent  was measured to be close to 3
in major US stock markets [1] as well as foreign exchange markets [2–4, see Tables
4 and 5]. The other well established empirical fact is that while the sign of �p(t)
measured at di*erent times has only short term correlations, its magnitude |�p(t)|
(or alternatively its square �p(t)2) has a long term memory as manifested by slowly
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decaying correlations. The correlation function was successfully 7tted by a power law
t−� with a small exponent � � 0:3 [5,6] over a rather broad range of times.

Several simpli7ed market models were introduced in an attempt to reproduce and
explain this set of empirical facts [7–12]. The current consensus among econophysicists
seems to be that these facts are a manifestation of some kind of strategy herding e*ect,
in which many traders lock into the same pattern of behavior. Large price �uctuations
are then explained as a market impact of this coherent collective trading behavior. Any
model aiming at understanding price �uctuations needs to de7ne a mechanism for the
formation of the price. Here the usual approach is to postulate some empirical (linear
or non-linear) market impact function, which reduces calculating prices to knowing the
imbalance between the supply of and the demand for the stock at any given time step.
Recently, one of us (S.M.) has introduced a toy model [13] in which the same

standard set of stylized facts, albeit with somewhat di*erent critical exponents, was
generated in the absence of any strategic behavior on the part of traders. The model
uses a rather realistic order-book-based mechanism of price formation, which does not
rely on any postulated market impact function. Instead, price �uctuations arise naturally
as a result of changes in the balance of orders in the order book. The long memory of
individual entries in this book gives rise to fat-tailed price distributions and volatility
clustering. Every market has two basic types of orders, which we would refer to as
limit and market orders. A limit order to sell (buy) is an instruction to sell (buy) a
speci7ed number of shares of a given stock if its price rises above (falls below) a
prede7ned level, which is known as the execution price of a limit order. A market
order on the other hand is an instruction to immediately sell (buy) a speci7ed number
of shares at whatever price currently available at the market. Here, we do not make
a distinction between a true market order and a marketable limit order, which can be
immediately 7lled by previously placed limit orders on the complimentary side of the
market, and refer to both of them as ‘market orders’. The model of Ref. [13] assumes
the simplest possible mechanism for the dynamics of individual orders in the order
book. At each step, a new order is submitted to the market. With equal probabilities
this can be a limit order to sell, a market order to sell, a limit order to buy, or a market
order to buy. All orders are of the same unit size, and a new limit order to sell (buy)
is placed with a random o*set � above (below) the most recent transaction price. In
spite of its utmost simplicity the model has a surprisingly rich behavior, which up to
now was understood only numerically. The distribution of price �uctuations has power
law tails characterized by an exponent =2, while the correlation function of absolute
values of price increments decays as t−0:5.
Of course, the dynamics of a real order book is much more complicated than the

rules of the toy model from Ref. [13]. First of all, in real markets, both market and limit
orders come in vastly di*erent sizes and exist for various time frames. Secondly, par-
ticipants of real markets do use strategies after all. In particular, both under-capitalized
speculators and well-capitalized market makers avoid static public display of their will-
ingness to accept a given price. In practice that means that a quote or a limit order
may represent only a part of a large pending order. An active market participant may
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adjust a previously placed quote in response to sudden price movements, or display
and later withdraw a “fake” quote, which is suQciently far from the highest bid and
lowest ask prices, so that it is almost never 7lled. This last strategy creates an illusion
of an imbalanced order book, which can confuse other traders. Finally, there is a prac-
tically all-important matter of time delay between the actual state of the order book
and whatever a particular trader observes on his=her screen. Prior to electronic data
transmission, investors might not know at what price the queue is matching their buy
and sell orders until long after the transaction took place. On the other hand, market
makers have always had near immediate access to completed transaction data. With
modern computerized markets, there is a much shorter delay between a transaction’s
completion time and trader’s awareness of the event, but yet the delay still exists. The
authors are familiar with day-traders moving from one city to another based on an
empirical discovery of as little as a 1 s improvement in data delivery. During peak ac-
tivity periods (near the open, close and signi7cant news events), data delivery delays of
15–30 s are sometimes experienced. The inhomogeneity of those delay times for dif-
ferent market participants contributes to the wide variety of strategies employed by
traders. It is common knowledge among professional traders that some novices will
attempt to day-trade using web-based data and order entry systems. During peak ac-
tivity, their data may be 5–10 min old. Professional traders anticipate this by taking a
position seconds after a signi7cant short term price change, and then exchanging this
position with a novice a few minutes later.
In this work, we attempt to establish some empirical facts about the statistical prop-

erties and dynamics of publicly displayed limit orders using data collected in a real
market. The purpose of this analysis is twofold. First of all, these new observations
would extend a rather narrow list of stylized facts about real markets. In econophysics
as in other branches of physics (or any other empirical science for that matter) the
only way to choose among many competing theoretical models is to make new em-
pirical observations. Since the high frequency data about the state of an order book is
much harder to collect than the highly institutionalized record of actual transactions, to
our knowledge this investigation was never attempted by members of the econophysics
community before. Second, we hope that the study of a real order book’s dynamics
would suggest new realistic ingredients that can be added to a toy model of Ref. [13]
to improve its agreement with the extended set of stylized facts.
Markets di*er from each other in precise rules of submission of orders and the

transparency of the order book. In the so-called order-driven markets there are no
designated market makers who are required to post orders (quotes) on both bid and
ask sides of the order book. Instead, the liquidity is provided only by limit orders
submitted by individual investors. Versions of this market mechanism are employed
in such markets as Toronto Stock Exchange (CATS), Paris Bourse (CAC), Tokyo
Stock Exchange, Helsinki Stock Exchange (HETI), Stockholm Stock Exchange (SAX),
Australian Stock Exchange (ASX), Stock Exchange of Hong Kong (AMS), New Delhi
and Bombay Stock Exchanges, etc. Major US markets use somewhat di*erent systems.
In the New York Stock Exchange individual orders are matched by a specialist who
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does not disclose detailed data regarding the contents of his order book. This reduces
the transparency (or openness) of the order book to market participants. The NASDAQ
Level II screen is the closest US equivalent to an order book in an order-driven market.
Since the contents and dynamics of individual entries on this screen are main subjects
of the present work they will be described in greater details later on in the manuscript.
Before we proceed, we would like to make an important disclaimer regarding the

terminology used in this paper. To avoid overwhelming our readers by a variety of
di*erent 7nancial terms describing similar concepts, in this work, we would refer to
any yet un7lled order present in an order book as a ‘limit order’. While this is strictly
true for an order driven market, using this term to describe a market maker’s quote on
the NASDAQ Level II screen may seem a bit confusing at 7rst. However, it makes
sense in this context. Indeed, both individual limit orders in an order-driven market
and market maker’s quotes on the NASDAQ Level II screen can be viewed just as
commitments to buy (sell) a certain number of shares at a given price should the
queuing mechanism match this order with a complementary marketable order. The
only detail which distinguishes a market maker at NASDAQ from a regular trader in
an order-driven market is that by NASDAQ rules, the market maker must maintain
both buy and sell limit orders, changing their price level and volume within domains
established by exacting timing rules. But in zero order approximation one can simply
forget that these two quotes come from the same source and think about them just as
two individual ‘limit orders.’
The other simpli7cation adopted in this work is that we do not make a distinction

between a true market order and a marketable limit order, placed at or better than the
inside bid or ask price, and refer to both of them as ‘market orders’. From this point
of view, a transaction always happens when a ‘market order’ (or a marketable limit
order) is matched with a previously submitted ‘limit order’ (or a quote by the market
maker). The size of an individual transaction is therefore a good measure of a market
order’s size in our de7nition.
The real time dynamics of an order book is a fascinating spectacle to watch (see

e.g. www.3dstockcharts.com). For frequently traded stocks, it is in a state of a constant
change. The density of limit orders goes up when more traders select to submit limit
orders rather than market (or marketable) orders. In the opposite case of a temporary
preponderance of market orders, the book gets noticeably thinner. In addition to these
�uctuations in the density and number of limit orders, any serious imbalance in the
number of limit orders to buy and limit orders to sell which are not too far from the
current price level gives rise to predictability of short-term price changes. This change
re�ects intuitive notions regarding supply and demand. i.e., the price statistically tends
to go up in response to an excess number of limit orders to buy and down in the
opposite case. It is by observing all of this in real time that one understands that
the balance of individual orders in the order book is the ultimate source of price
�uctuations.
In this work, we study statistical properties of the data that one of us (M.M.)

has collected, while trading on the NASDAQ market. Even though NASDAQ is a
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quote-driven (dealership) market, due to reasons explained above we believe that our
study should also apply to order books in order-driven markets. Indeed, many of our
conclusions are remarkably similar to those reported for order-driven markets in the
recent economic literature (see e.g. Refs. [14,15]). The NASDAQ Level II data for a
given stock lists current bid and ask prices and volumes quoted by all market mak-
ers and Electronic Communication Networks trading this stock. For example, the line:
JDSU GSCO K NAS 112.625 500 114.0625 500 can be interpreted as a display of
Goldman Sachs’(GSCO) intent to buy 500 shares of JDS Uniphase Corporation (JDSU)
at 112.625 per share and sell 500 shares at 114.0625 per share. Each such market maker
entry usually conceals a large secondary order book of limit orders submitted to this
market maker by his clients. Those “outside” bids and asks, i.e., private limit orders
at price levels more distant from the publicly displayed best (or “inside”) bid or ask,
generally remain hidden to most market participants. The concept of second hierarchical
level in the order book at NASDAQ can perhaps be best illustrated on an example of
Electronic Communication Networks (ECN) such as Island (the ECN symbol ISLD).
In this case, the “hidden” book can be actually viewed (e.g. at the Island’s website
(www.island.com)), while the only part of this book which is visible at the NASDAQ
Level II screen is its highest bid and lowest ask prices and volumes. There they are
shown as any other market maker entry: JDSU ISLD O NAS 113.75 200 114 800.
In the course of one trading day we recorded ‘snapshots’ of the order book for one

particular stock at time intervals which are on average 3 s apart. We were unable to
exactly account for the network delay between the time when a particular quote was
issued by the NASDAQ order-matching queue and the time when it was received by
us (i.e., our time stamp). Most of the time this delay is less than a second, but it is
known to occasionally exceed 15 or even 30 s during the times of especially heavy
trading volume. This record was subsequently binned by the price. Prices and aggregate
volumes at four highest bids and lowest asks were kept in the 7le. Due to the discrete-
ness of stock price at NASDAQ several market makers are likely to put their quotes
at exactly the same price. In our 7le we kept only the aggregate volume at a given
price, equal to the sum of individual limit orders (quotes) by several market makers.
A 7le collected during a typical trading day contains on average 7000 time points.
The 7rst question we addressed using this data set was: what is the size distribution

of limit and market orders? In Fig. 1, we show the cumulative distribution of market
(marketable) order sizes (or alternatively the sizes of individual transactions) calculated
for all stocks and trading days for which we have collected the data. From our record
we know only the total number of traded shares and the total number of transactions
which occurred between the two subsequent snapshots of the order book. This average
number of transactions per snapshot varies between 3 and 5.5 for di*erent stocks in our
data set. The size of a market order used in Fig. 1 was de7ned simply as the change in
the traded volume divided by the (usually small) number of transactions that occurred
between two subsequent snapshots of the screen. All our data are consistent with
transaction (market order) sizes being distributed according to a power law P(x) ∼
x−1−�market with an exponent �market =1:4 ± 0:1. Authors of Ref. [16] have analyzed
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Fig. 1. The cumulative distribution of market order (transaction) sizes. The straight line has the slope
�market =1:4.

the distribution of volumes of individual transactions for largest 1000 stocks traded
at major US stock markets and arrived at a similar average value for the exponent
�market =1:53 ± 0:07 (� in their notation). They also plotted the histogram of this
exponent measured for di*erent individual stocks (see Fig. 3(b) in Ref. [16]), showing
substantial variations.
The distribution of limit order sizes, to our knowledge, was never analyzed in the

literature before. To make the histogram of this distribution we used sizes of limit
orders at a particular level in the order book from all snapshots made throughout
one trading day. We found that this histogram can also be approximately described by
a power law form. The data for di*erent levels of bid and ask prices (level 1
being the highest bid and the lowest ask) for two of our stocks are presented in
Figs. 2 and 3. In both cases, all distributions were found to be consistent with an
exponent �limit =1:0± 0:3. The quality of the power law 7t is rather poor though with
error bars on �limit in each individual data set around ±0:1, while it was close to
±0:015 for the power law 7ts in Fig. 1. The above error bars of ±0:3 also include
�uctuations of the exponent between di*erent data sets. Looking for a better 7t to
our limit order data we repeated the above analysis using cumulative histograms and
we saw that a log-normal distribution approximates our data over a wider region (see
Fig. 4). The best 7t to a log-normal distribution has similar parameters for di*erent
stocks, trading days, and levels in the order book. The best empirical formula for the
probability distribution of limit order sizes is thus P(x)= x−1 exp(−(A − ln(x))2=B),
with parameters A and B �uctuating around 7± 0:5 and 4± 0:5 in all of our data sets.
This formula indeed gives the e*ective power law exponent �limit =1 for x � 8000
i.e., near the center of our range.
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Fig. 2. The size distribution of limit orders (consolidated quotes) placed at di*erent levels in the order book
for the stock of the JDS Uniphase Corporation (ticker symbol JDSU) traded on July 5, 2000. The straight
line has the slope 1 + �limit =2.

Fig. 3. The size distribution of limit orders (consolidated quotes) placed at di*erent levels in the order book
for the stock of the Broadcom Corporation (ticker symbol BRCM) traded on July 3, 2000. The straight line
has the slope 1 + �limit =2.

We next concentrate on calculating the depth of the order book at any given bid and
ask level. The depth of the order book is an important measure of the liquidity of the
market for a particular stock. For a given state of the order book one can measure the
total volume (number of shares) N (Wp) of limit orders with execution prices lying
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Fig. 4. The cumulative distribution of highest (level 1) bid sizes. Solid lines are best 7ts with the cumu-
lative histogram of a log-normal distribution P(x)= x−1 exp(−(A− ln(x))2=B). The best 7t parameters are
A1 = 6:94, B1 = 4:20 for the JDSU, and A2 = 6:57, B2 = 3:56 for the BRCM.

within a certain price range Wp from the middle of the highest bid=lowest ask spread.
The function Wp(N ), which is the functional inverse of N (Wp) can be thought of
as the virtual impact that a hypothetical market order of volume N would have on
the price of the stock. That is to say, a hypothetical trader willing to immediately
sell N shares would have changed the price by Wp(N ), provided that no new limit
orders (quotes) would appear, while his order is executed. It is important to emphasize
the word virtual here. Indeed, in real markets new limit orders would be immediately
submitted by market makers (or speculators in order-driven markets) in response to
the arrival of a large market order. The 7rst step in quantifying the depth of the limit
order book is to measure the average price di*erence between di*erent levels of the
book, e.g. the average gap between the prices of the highest and the next highest bids.
For both bid and ask sides of the book at all levels, the average price gap between
levels was measured to be around $0.064 for the CSCO stock traded on June 30,
2000, $0.08 for the JDSU stock traded on July 5, 2000 and $0.12 for the BRCM stock
traded on July 3, 2000. At the same time, the number of outstanding shares of the
above three companies were 7.3, 1.3, and 0.24 billion shares correspondingly. Also,
the average daily volume of CSCO on the particular day when our data were recorded
was larger than that of JDSU and BRCM by approximately a factor 1:5. One can see
that more capitalized and more frequently traded companies have on average smaller
gaps between their consecutive bid and ask prices. In case of JDSU and BRCM, the
average bid–ask spread (i.e., the di*erence between the lowest ask and the highest bid
prices) was measured to be some 10–20% smaller than the average gap between two
levels on the same side of the book. Also, for both these sets, gaps on the ask (limit
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Fig. 5. The average number of shares o*ered in limit orders at a given level as a function of the level number.
Negative levels correspond to limit orders to buy (bids), while positive to limit orders to sell (asks).

orders to sell) side seem to be some 5–10% higher than on the bid (limit orders to
buy) side. It is not clear if that was just an artifact of the trading day or a sign of
some real asymmetry. More interesting behavior was observed for the average size
of a limit order as a function of level of the order book. The average size reaches
its maximum at level 1 of the book (highest bid=lowest ask) and gradually falls o*
with the level number (see Fig. 5). Using the data for the average volume at each
level and the average price di*erence between levels one easily reconstructs the curve
Wp(N ) (see Fig. 6). From this curve one concludes that the virtual price impact Wp
of a market order is a nonlinear function of the order size N . Similar results were
observed for the limit order book at the Stockholm Stock Exchange by Niemeyer and
Sandas (see Fig. 8 in Ref. [17]). To derive a concise formula for Wp(N ) we 7t it
to the power law |Wp(N )| ∼ |N |� separately on positive and negative sides of each
curve. The exponent � of this 7t was measured to be 2:05 ± 0:05 for four out of six
curves, while in the remaining two it was as high as 2:5 and 2:7. In Ref. [18] it was
argued that the price impact function should have an exponent �=0:5. This conjecture
was later used in several models to arrive at the empirically observed value of the
exponent  of the fat tails in the histogram of price �uctuations. Our virtual market
impact function characterized by �¿ 2 has the opposite convexity compared to that
with �=0:5. We attribute this discrepancy to the di*erence between virtual and real
market impacts, where the latter is dramatically softened by actions of speculators.
The subject of speculators brings us directly to the last question we addressed using

our data: can one use the information contained in the order book to predict the
magnitude and direction of price changes in the near future? Many seasoned day traders
would answer yes to this question. From the law of supply and demand, one expects
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Fig. 6. The virtual impact of a market order calculated from the density of limit orders in the order book.
Negative x corresponds to market orders to sell, while positive—to market orders to buy. Solid lines are
power law 7ts to the data performed separately on positive and negative sides. The exponent � of the best
7t was measured to be 2:05 ± 0:05 except for the negative part of the CSCO curve (2:5) and the positive
part of the JDSU curve (2:7).

that a signi7cant excess of limit orders to sell above limit orders to buy (excess supply
of stock) would push the price down while in the opposite case, the price would
go up. It means that a speculator who has access to the current state of the order
book can predict (and use this prediction for his=her pro7t) the direction of price
change in the near future. The 7rst way to measure the short term predictability of
market price changes using our data is to concentrate on those moments in time when
the total number of shares contained in limit orders to sell and limit orders to buy
di*er by a signi7cant number of shares. In principle, this amount should be selected
proportional to the average daily volume of transactions for each particular stock, yet
in our calculations we 7xed it to be 10; 000 shares for each of the stocks in our
data sets. Also, we looked only at the imbalance between volumes o*ered at highest
bid and lowest ask prices. We then averaged price increments at times immediately
following the moment of large excess demand (or supply) over all events when this
excess occurred and plotted it as a function of time in Fig. 7. From this plot one
can conclude that indeed as expected from the law of supply and demand, an excess
of limit orders to buy drives the price up, while an excess of limit orders to sell
drives it down. In our data set this predictability of future prices lasts for only a few
minutes (only for 30 s for some of the stocks). Therefore, speculators who want to use
this e*ect need to act quickly and to have a very fast and reliable connection to the
main computers at NASDAQ. Yet another way to visualize the e*ect the imbalance
of supply and demand has on the price is to calculate the average change in price
of the stock during a 7xed time interval Wt conditioned at a certain value of the
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Fig. 7. The market impact of a large imbalance (larger than 10,000 shares) in the number of shares o*ered
at the highest bid and lowest ask prices. The upper portions of curves correspond to the excess demand for
the stock, while lower ones for the excess supply.

imbalance of the order book before the change. In Fig. 8 we plot the average 1-min
price change 2 as a function of the initial imbalance of limit orders at the highest
bid=lowest ask levels. At our level of statistical errors it appears that the average price
change scales approximately linearly with the excess supply (or demand). This plot
once again con7rms that the in�uence of the state of the order book on the price is a
real and sizable e*ect. This e*ect is more pronounced for relatively low-volume stocks
such as JDSU and BRCM and less so for a high-volume stock like CSCO. However,
as shown in the inset of Fig. 8, normalization of the x-axis by the average number
of shares of the stock traded between two of our snapshots, which is proportional to
the daily volume, and normalization of the y-axis (1-min price change) by the average
daily price (or alternatively the use of returns r(t)=p(t + Wt)=p(t) − 1), makes all
three curves approximately collapse on top of each other.
In conclusion, we have presented an empirical study of statistical properties of a

limit order book using the high frequency data collected in the NASDAQ Level II
system. It was observed that the distribution of market (or marketable limit) orders
has power law tails characterized by an exponent 1 + �market =2:4± 0:1. The distribu-
tion of limit order sizes is also consistent with a power law with an exponent close
to 2. However, it was found that a log-normal distribution provides a better 7t to the
cumulative distribution of limit order sizes over a wider range. The depth of the order
book measured as a virtual price impact of a hypothetical large market order was found
to be a non-linear function of its size. This non-linearity is due to the decay in the

2 To be precise two prices used to calculate the price change were separated by 20 of our screen snapshots,
which are approximately 3 s apart.
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Fig. 8. The average price change one minute after an excess supply or demand was observed as a function
of the excess demand, i.e., volume at the highest bid minus volume at the lowest ask. The inset shows the
same data but with the y-axis normalized by the average daily price of the stock, and the x-axis normalized
by the average volume (number of shares traded) between two snapshots.

density of limit orders (quotes) away from the most recent transaction price. In reality
though, this virtual impact is probably much softened by actions of speculators, so that
the convexity of the non-linear part may even change its sign. A large imbalance in
the number of limit orders at the highest bid and lowest ask sides of the book leads to
a predictable average price change which is in accord with intuitive notions regarding
supply and demand. This e*ect seems to disappear at a time scale of several minutes.
The short-term average price change linearly depends on the imbalance in the total vol-
ume of limit orders at the inside bid and ask prices. These empirical 7ndings may prove
to be useful in narrowing down the list of models, used to explain the set of stylized
facts about market price �uctuations. Even more importantly, this work may shift the
attention of the econophysics community towards more realistic order book based price
formation mechanisms. Work is currently underway to add some of the observed empir-
ical features to the simple toy model of order-driven markets proposed by one of us in
Ref. [13]. In particular, we plan to check the e*ect that broad (power law) distributions
of limit and market order sizes would have on the critical exponents of this model.

Work at Brookhaven National Laboratory was carried out under Contract No. DE-
AC02-98CH10886, Division of Material Science, U.S. Department of Energy.

References

[1] P. Gopikrishnan, M. Meyer, L.A.N. Amaral, H.E. Stanley, Inverse cubic law for the probability
distribution of stock price variations, Eur. Phys. J. B 3 (1998) 139.



246 S. Maslov, M. Mills / Physica A 299 (2001) 234–246

[2] M.M. Dacorogna, U.A. Muller, R.J. Nagler, R.B. Olsen, O.V. Pictet, J. Int. Money Finance 12 (1993)
413.

[3] D.M. Guillaume, M.M. Dacorogna, R.D. Dave, U.A. Muller, R.B. Olsen, O.V. Pictet, Finance and
Stochastics 1 (1997) 95.

[4] M.M. Dacorogna, U.A. Muller, O.V. Pictet, C.G. de Vries, The distribution of extremal foreign exchange
rate returns in extremely large data sets, The Olsen Group Internal Document, UAM 1992-10-22 (1995)
(http:==www.olsen.ch=library=research=oa working.html).

[5] R. Cont, M. Potters, J.-P. Bouchaud, Scaling in stock market data: stable laws and beyond, Lecture
given at Les Houches Workshop on Scale Invariance, March 1997 (http:==xxx.lanl.gov=abs=cond-mat=
9705087).

[6] Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, H.E. Stanley, The statistical properties of
the volatility of price �uctuations, Phys. Rev. E 60 (1999) 1390.

[7] Y.-C. Zhang, Modeling market mechanism with evolutionary games, Europhys. News 29 (1998) 51.
[8] D. Challet, M. Marsili, Y.-C. Zhang, Modeling market mechanism with minority game, 1999,

cond-mat=9909265.
[9] D. Challet, M. Marsili, Y.-C. Zhang, Stylized facts of 7nancial markets and market crashes in minority

games, 2001, cond-mat=0101326.
[10] R. Cont, J.-P. Bouchaud, Herd behavior and aggregate �uctuations in 7nancial markets, 1997,

cond-mat=9712318.
[11] R. Cont, J.-P. Bouchaud, Macroeconomic Dynamics 4 (2) (2000) 170.
[12] D. Sornette, D. Stau*er, H. Takayasu, Market �uctuations, multiplicative and percolation models, size

e*ects and predictions, 1999, cond-mat=9909439.
[13] S. Maslov, Simple model of a limit order-driven market, Physica A 278 (2000) 571.
[14] B. Biais, P. Hilton, C. Spatt, An empirical analysis of the limit order book and the order �ow in the

Paris Bourse, J. Finance 50 (1995) 1655.
[15] K. Hedvall, J. Niemeyer, G. Rosenqvist, Do buyers and sellers behave similarly in a limit order book?

A high-frequency data examination of the Finnish stock exchange, J. Empirical Finance 4 (1997) 279,
and references therein.

[16] P. Gopikrishnan, V. Plerou, X. Gabaix, H.E. Stanley, Statistical properties of share volume traded in
7nancial markets, Phys. Rev. E 62 (2000) R4493.

[17] J. Niemeyer, P. Sandas, An empirical analysis of the trading structure at the Stockholm Stock Exchange,
Stockholm School of Economics, Working paper No. 44, 1995.

[18] Y.-C. Zhang, Toward a theory of marginally eQcient markets, Physica A 269 (1999) 30.


